Testing Method to identify Counterfeit Multilayer Ceramic Capacitors

Written by Yung-Hsiao Chung, Cheng-Hsun LEE, Liwei Xu, Yuqian Hu, ZongXuan Wang and Stephen E. Saddow

1 Global ETS-USA, Odessa, FL 33556, USA
2 Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA

Abstract: Due to the high-volume production of mobile phones and computer tablets, the demand for MLCCs (Multilayer Ceramic Chip capacitors) has started to outstrip supply, especially for custom MLCCs. This is particularly true for Class I MLCCs with special specifications such as high voltage and frequency stability, and for such stringent applications as automotive, military and aerospace. Under these conditions, the opportunity for counterfeit OEM and replacement capacitors to enter the supply chain continues to grow. This is especially true as the majority of MLCCs have no marking and cannot easily be distinguished from their package, which gives unscrupulous vendors opportunities for fraud.

This paper introduces several test methods for MLCC compliance verification, namely 1) The effect of DC bias on capacitance, 2 ) Capacitance temperature characteristics, 3) High voltage testing of DCW (Dielectric withstand voltage) and IR (Insulation Resistance), 4) Cross section (Dielectric layer and terminal comparison for flex types), and 5) electron microscopy (EDS) material analysis to match with known good device chemical composition.

Dilution of Dynasolve 750 Solvent for Solvent Test Improvements

Neckodemos Davison, Cheng-Hsun Lee, Stephen E. Saddow, and Yung-Hsiao Chung

  1.  Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA;

  2.  Destructive Testing Department, Global ETS-USA, Odessa, FL 33556, USA;

  3. Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA;

  4.  Engineering Department, Global ETS-USA, Odessa, FL 33556, USA;

Abstract: The electronic assurance testing industry has significantly grown in the last decade due to the increase in counterfeit electronic component insertion into the world market place. This study seeks to improve the current standards of heated solvent testing in the destructive testing portion of the electronic testing industry. The evidence in this report supports an economical solution to the issue of exemplar integrated circuit (IC) component casings becoming heavily damaged during heat solvent tests along with counterfeit IC components. The method proposed is to dilute the most commonly used solvent, Dynasolve 750, with 1-Methyl-2-pyrrolidinone in a ratio of 2:8, respectively, while applying the standard testing procedure from standard Dynasolve 750 tests. This dilution produces testing results in exemplar components that show very similar surface topography to untested exemplar components while simultaneously destroying the casings of counterfeit components. Multiple tests of this new method, in conjunction with scanning electron microscope (SEM) inspection, were conducted on various types of IC components in this study to support these findings.